Abstract

The Reynolds equations and the two-parameter differentialq-Ω model of turbulence are used to investigate a flow past a circular cylinder with an isothermal surface (temperature factorTw0 = 0.5) at the Mach numberM∞ = 5 in the range of Reynolds numbers Re = 104-108. It is demonstrated that the turbulization of flow leads to a shift of the separation point downstream, a reduction and stabilization of the separation zone length, a decrease in the maximum velocity in the separation zone, and an increase in the heat flux at the rear stagnation point compared with its value at the forward stagnation point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.