Abstract

The study aims to develop a novel, lead-free, flexible and lightweight composite shielding material against ionizing radiation. For this, it was used bismuth oxide (Bi2O3) in RTV-2 silicon matrix. The shielding tests were carried out in both diagnostic X-ray energies and intermediate gamma-ray energy range of up to 662 keV to determine the radiation attenuation properties of this material in terms of attenuation ratio, half value layer, tenth value layer, mean free path and lead equivalency of samples in weight of 30%, 40%, 50% in Bi2O3. In the diagnostic X-ray energy range, half value layer, tenth value layer and lead equivalency (in mm Pb) of the produced samples were measured at 80 and 100 kVp narrow beam conditions according to the requirements of EN IEC 61331-1 standard. The results show that lead equivalent values of the produced novel sheets was measured to be 0.16 mm Pb, corresponding to a 6 mm thickness of the flexible sample when it contains 30% wt. Bi2O3 in RTV matrix. The experimental findings for durability and flexibility also indicated that this new RTV-based flexible, lead -free shielding composite can be used safely for especially for manufacturing aprons, garments and thyroid guards used in mammography, radiology, nuclear medicine and dental applications in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.