Abstract

AbstractThis paper reports the implementation of a supervisory control framework and modular software architecture built around the lightweight communication and marshalling (LCM) publish/subscribe message passing system. In particular, we examine two diverse marine robotics applications using this modular system: (i) the development of an unmanned port security vehicle, a robotic surface platform to support first responders reacting to transportation security incidents in harbor environments, and (ii) the adaptation of a commercial off-the-shelf autonomous underwater vehicle (the Ocean-Server Iver2) for visual feature-based navigation. In both cases, the modular vehicle software infrastructures are based around the open-source LCM software library for low-latency, real-time message passing. To elucidate the real-world application of LCM in marine robotic systems, we present the software architecture of these two successful marine robotic applications and illustrate the capabilities and flexibilities of this approach to real-time marine robotics. We present benchmarking test results comparing the throughput of LCM with the Mission-Oriented Operating Suite, another robot software system popular in marine robotics. Experimental results demonstrate the capacity of the LCM framework to make large amounts of actionable information available to the operator and to allow for distributed supervisory control. We also provide a discussion of the qualitative tradeoffs involved in selecting software infrastructure for supervisory control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.