Abstract

Finite element (FE) modeling of the spine has increasingly been applied in orthopedic precision-medicine approaches. Previously published FE models of the pediatric spine growth have made simplifications in the geometry of anatomical structures, material properties, and representation of vertebral growth. To address those limitations, a comprehensive FE model of a pediatric (10-year-old) osteo-ligamentous thoracic and lumbar spine (T1-L5 with intervertebral discs (IVDs) and ligaments), ribcage, and pelvis with age- and level-specific ligament properties and orthotropic region-specific vertebral growth was developed and validated. Range of motion (ROM) measures, namely, lateral bending, flexion-extension, and axial rotation, of the current 10 YO FE model were generally within reported ranges of scaled in vitro adult ROM data. Changes in T1-L5 spine height, as well as kyphosis (T2-T12) and lordosis (L1-L5), angles in the current FE model for two years of growth (from ages 10 to 12 years) were within ranges reported from corresponding pediatric clinical data. The use of such comprehensive pediatric FE models can provide clinically relevant insights into normative and pathological biomechanical responses of the spine, and also contribute to the development and optimization of clinical interventions for spine deformities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.