Abstract

A three-dimensional finite-element (FE) model of a human head including the auditory periphery was developed to obtain a better understanding of bone-conducted (BC) hearing. The model was validated by comparison of cochlear and head responses in both air-conducted (AC) and BC hearing with experimental data. Specifically, the FE model provided the cochlear responses such as basilar membrane velocity and intracochlear pressure corresponding to BC stimulations applied to the mastoid or the conventional bone-anchored-hearing-aid (BAHA) positions. This is a strength of the model because it is difficult to obtain the cochlear responses from experiments corresponding to the BC stimulation applied at a specific position on the head surface. In addition, there have been few studies based on an FE model that can calculate the head and cochlear responses simultaneously from a BC stimulation. Moreover, in this study, the intracochlear sound pressure at multi-positions along the BM length was calculated and used to clarify the effect of stimulating force direction on the cochlear and promontory velocities in BC hearing. Also, the relationship between BC and AC stimulation and the basilar membrane velocity in the FE model was used to calculate the stimulation level at hearing thresholds which has been investigated only by psychoacoustical methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.