Abstract

Infectious disease is one of the most serious problems in the aquaculture industry for ornamental or edible fish. This study attempted to develop a new device for preventing an aquatic bacterial disease, ulcer disease, caused by Aeromonas salmonicida (As), using “affinity silk”. Affinity silk is a silk protein-containing fibroin L-chain (FibL) fused to the single-chain variable fragment (scFv). It can be easily processed into different formats such as fibers, gels, sponges, or films. A transgenic silkworm that could express a cDNA construct containing FibL fused to an scFv derived from a monoclonal antibody (MAb) against As was successfully generated. An enzyme-linked immunosorbent assay was used to detect As by employing 96-well plates coated with scFv-conjugated affinity silk. As could be captured efficiently by glass wool coated with affinity silk in the column. Furthermore, the air-lift water filter equipped with the affinity silk-coated wool could considerably reduce the concentration of As in water and was estimated to have sufficient ability to trap a lethal dose of As. These findings show that the “affinity silk filter” is a potential device for the prophylaxis of aquatic animal diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call