Abstract

Standard backscatter lidars encounter problems when solving the two unknowns (aerosol backscatter coefficient and extinction coefficient) from the only one recorded lidar equation. With the help of the high-spectral-resolution filter, high spectral resolution lidars (HSRLs) can provide unambiguous retrieval without critical assumptions. Spectral discrimination between scattering from molecules and aerosols or cloud particles is the basis of the HSRL technique, and several lidar approaches have been developed to obtain this discrimination. Iodine cell filter, which is a kind of atomic/molecular absorption filter, is robust, stable, and can achieve very good separation of aerosol Mie scattering from atmosphere molecular Cabannes scattering. However, absorption filters are lossy and gaseous absorption lines do not exist at many convenient laser wavelengths. Fabry-Perot interferometers are simple and can be tuned to any wavelength, but are limited by acceptance angle. Field-widened Michelson interferometer (FWMI) is considered to have the ability to overcome the deficiencies of the aforementioned filters as it can perform well at relatively large off-axis angles, is nearly lossless, and can be built to any wavelength. In this paper, the development process of an FWMI that is introduced to be the spectroscopic filter for a polarized near-infrared HSRL instrument will be present. The retrieval process of the aerosol optical properties, the design requirements with special focus on the selection of the free spectral range (FSR) of the FWMI, as well as the design result will be described in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.