Abstract

The performance of gaseous air cleaners for commercial and residential buildings has typically been evaluated using test protocols developed for a controlled laboratory chamber or a test duct. It is currently unknown how laboratory measurements relate to the actual performance of an air cleaner installed in a real building. However, to date, there are no air cleaner field test protocols available, thereby limiting the existing field data. The National Institute of Standards and Technology (NIST) has conducted a series of experiments to support test procedure development for evaluating the installed performance of gaseous air cleaning equipment, as well as metrics for characterizing field performance. To date, over 100 experiments have been completed, of which 23 portable air cleaner experiments and 6 in-duct air cleaner experiments are described in this paper. Tests were conducted in a finished three-bedroom/two-bathroom manufactured house equipped with several gas chromatographs to semi-continuously measure air change rates and volatile organic compound concentrations. Experimental variables included air cleaner location, isolation of zones by closing doors, and contaminant source location. For each experiment, air cleaner removal of decane was directly measured using the air cleaner inlet and outlet concentrations, as well as with mass balance analyses using measured room concentrations. With a verified mass balance model, a field performance metric was developed to compare installed whole-building performance to the performance predicted by a laboratory result. The results provide insight into the protocols and metrics that might prove useful for characterizing the field performance of air cleaners as well as the impact of air cleaner removal on zonal concentration levels in a variety of situations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call