Abstract

Ferrofluid-based systems provide an opportunity for increasing the durability and reliability of systems, where mechanical parts are prone to wear and tear. Conventional reaction control systems are based on mechanically mounted rotating disks. Due to inherent friction, they suffer from degradation, which may eventually lead to failure. This problem is further intensified due to the limited possibility for repair and maintenance. Ferrofluid-based systems aim to replace mechanical components by exploiting ferrofluidic suspended motion. Ferrofluids consist of magnetic nanoparticles suspended in a carrier fluid and can be manipulated by external magnetic fields. This paper describes the working principle, design, and integration of a working prototype of a ferrofluid-based attitude control system (ACS), called Ferrowheel. It is based on a stator of a brushless DC motor in combination with a rotor on a ferrofluidic bearing. The prototype will be verified in a microgravity environment on the International Space Station, as part of the Überflieger 2 student competition of the German Aerospace Center. First ground tests deliver positive results and confirm the practicability of such a system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.