Abstract

The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components and specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain–vs.–life (ε–N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This paper reviews the existing fatigue ε–N data for austenitic stainless steels in LWR coolant environments. The effects of key material, loading, and environmental parameters, such as steel type, strain amplitude, strain rate, temperature, dissolved oxygen level in water, and flow rate, on the fatigue lives of these steels are summarized. Statistical models are presented for estimating the fatigue ε–N curves for austenitic stainless steels as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are presented. Data available in the literature have been reviewed to evaluate the conservatism in the existing ASME Code fatigue design curves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call