Abstract

sBackgroundAseptic loosening of total joint replacements (TJRs) continues to be the main cause of implant failures. The socioeconomic impact of surgical revisions is hugely significant; in the United Kingdom alone, it is estimated that £137 m is spent annually on revision arthroplasties. Enhancing the longevity of titanium implants will help reduce the incidence and overall cost of failed devices.MethodsIn realising the development of a superior titanium technology, we exploited the natural affinity of titanium for phosphonic acids and developed a facile means of coating the metal with (3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP), a phosphatase-resistant analogue of lysophosphatidic acid (LPA). Importantly LPA and selected LPA analogues like FHBP synergistically cooperate with calcitriol to promote human osteoblast formation and maturation.ResultsHerein, we provide evidence that simply immersing titanium in aqueous solutions of FHBP afforded a surface that was superior to unmodified metal at enhancing osteoblast maturation. Importantly, FHBP-functionalised titanium remained stable to 2 years of ambient storage, resisted ∼35 kGy of gamma irradiation and survived implantation into a bone substitute (Sawbone™) and irrigation.ConclusionThe facile step we have taken to modify titanium and the robustness of the final surface finish are appealing properties that are likely to attract the attention of implant manufacturers in the future.The translational potential of this articleWe have generated a functionalised titanium (Ti) surface by simply immersing Ti in aqueous solutions of a bioactive lipid. As a facile procedure it will have greater appeal to implant manufacturers compared to onerous and costly developmental processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.