Abstract

To attain reliable and high performance in biomedical applications, magnetic particles with regular spherical shape, narrow size distributions, high-saturation magnetization, and good dispersion in liquid media is very important. Therefore, the synthesis of monodispersed, water-dispersible, and regular spherical superparamagnetic iron oxides nanoparticles (SPIONs) with high saturation magnetization will be of great importance. Here we report a facile, fact and simple electrochemical tactic for preparation of SPIONs and their one step in situ surface engineering in both aqueous and ethanol mediums. In this platform, optimum and simple electrochemical conditions were first constructed for preparation of Fe3O4 and γ-Fe2O3 nanoparticles in both ethanol and aqueous mediums, and monodispersed nanoparticles with superparamagnetic properties were prepared. The field emission scanning and transmission electron microscopy (FE-SEM and TEM) observations revealed that the electrodeposited nanoparticles have roughly spherical and homogeneous shape with narrow size distribution. Then, Fe3O4 nanoparticles were coated by polyvinyl chloride (PVC) during deposition process. The PVC coating on SPIONs surface was confirmed by Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), differential scanning calorimetry (DSC), and thermogravimetric (TG) analyses. Results of vibrating sample magnetometer (VSM) indicated that the prepared SPIONs exhibit superparamagnetic behavior including negligible remnant magnetization and negligible coercivity, and high saturation magnetization at room temperature. PVC coated SPIONs exhibited saturation magnetization value of 43.72emu/g, and negligible remnant magnetization and coercivity (Mr~0.15emu/g and Ce~0.5Oe, respectively). Based on the obtained results, it was concluded this electrochemical strategy can be introduced as a novel and clean platform for preparation of variety polymer and drug coated/loaded SPIONs for biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call