Abstract

In this paper, a dynamics-based interpolator with real-time look-ahead (DBLA) algorithm is proposed to generate a smooth and jerk-limited acceleration/deceleration (ACC/DEC) feedrate profile. The interpolator consists of three modules: geometric, dynamics-based, and jerk-limited modules. The geometric module can detect the local maximum/minimum (max/min) curvatures, and divide a NURBS curve into small segments according to the information of sharp corners. The feedrates at the sharp corners are determined based on confined chord errors and curvatures of the curve. The dynamics-based module utilizes a dynamics feedrate modification equation (DFME) to estimate contour errors at the sharp corners and adjusts the feedrates at the locations of the sharp corners. The jerk-limited module plans the feedrate profile of the curve according to the segmentsā€™ length and the given jerk limit. Simulations are performed to verify real-time performance of the look-ahead algorithm. Experiments using a PC-based motion controller and an Xā€“ Y table are conducted to demonstrate that high-accuracy can be achieved with the proposed dynamics-based interpolator as compared to the adaptive-feedrate and the curvature-based feedrate interpolation algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.