Abstract

In recent decades, there has been a growing global concern with regard to vehicle-generated greenhouse gas emissions and the resulting air pollution. In response, automotive original equipment manufacturers focus their efforts on developing ?greener? propulsion solutions in order to meet the societal demand and ecological need for clean transportation. Hydrogen is an ideal vehicle fuel for use not only in fuel cells (FCs) but also in a spark-ignition internal combustion engines (ICEs). The combustion of hydrogen ( H2) fuel offers vastly superior tail-pipe emissions when compared with gasoline and can offer improved performance. H2 is ideally suited for use in an extended range plug-in hybrid electric vehicle architecture where engine efficiency can be optimized for a single engine speed. H2 ICEs are significantly more cost effective then an equivalent-sized H2 FC making them a better near-term solution. Before hydrogen can replace gasoline and diesel as the main source of automotive fuel, a number of hurdles must first be overcome. One such hurdle includes developing a suitable hydrogen infrastructure, which could take decades. As such, dual-fuel capabilities will help to create a transition between gasoline- and hydrogen-powered vehicles in the near term, while a full-service hydrogen infrastructure is developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.