Abstract

The real-world fuel economy of vehicles is becoming increasingly important to manufacturers and customers. One of the major influences in this is driver behaviour, but it is difficult to study in a controlled and repeatable manner. An assessment of driver models for studying real-world driver behaviour has been carried out. It has been found that none of the currently existing driver models has sufficient fidelity for studying the effects of real-world driver behaviour on the fuel economy of the individual vehicle. A decision-making process has been proposed which allows a driver model with a range of driving tasks to be developed. This paper reports the initial results of a driver model as applied to the conceptually straightforward scenario of high-speed cruising. Data for the driver model have been obtained through real-world data logging. It has been shown that the simulation driver model can provide a good representation of real-world driving behaviour in terms of the vehicle speed, and this is compared with a number of logged driver speed traces. A comparison of the modelled fuel economy for logged and driver model real-world drivers shows good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.