Abstract
AbstractA spatially distributed Xinanjiang model (DXAJ) has been developed to simulate the hourly hydrological process of a storm event caused by Typhoon No. 11 during the period of the 22–23 August 2001 in the Kamafusa Lake catchment, Miyagi Prefecture, Japan. The catchment is divided into 50 × 50 m2 grid cells, and the runoff generation component of the Xinanjiang rainfall‐runoff model is applied to each grid cell. An optimal routing order approach is used to implement the distributed routing, i.e. the runoff generated in each grid cell is routed together with upstream inflow from upstream grid cells to downstream grid cells according to the optimal routing order, which is derived from a simulated stream network. One process‐based soil erosion model is coupled onto this distributed hydrological model to simulate suspended solids generation in each grid cell and generated suspended solids are routed together with runoff from upstream grid cells to downstream grid cells. The simulation results are in good agreement with the observed hydrograph and pollutograph. The soil erosion simulation was improved through the consideration of rainfall intensity in the soil erosion model. Copyright © 2003 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.