Abstract

A high-order Discontinuous Galerkin (DG) solver is assessed in the computation of the flow through an Organic Rankine Cycle turbine nozzle and stage. The flow features are predicted with a RANS (Reynolds averaged Navier­Stoke) approach and the k-log() turbulence model in a multi reference frame, where interfaces between fixed and rotating zones are treated with a mixing plane approach, and non reflecting boundary conditions are used. Primitive variables based on pressure and temperature logarithms are adopted to ensure non-negative thermodynamic variables at a discrete level. The fluid can be modeled with the polytropic ideal gas law and the Peng-Robinson equation of state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.