Abstract

A group of digital human models (DHMs) representing the target population under consideration is used to design products and workplaces in virtual environment. The present study proposes a two-step method which generates a group of DHMs in various sizes to properly accommodate the designated level of the human size variability of the target population. In the first step, a designated number of pairs of stature and weight within a specified accommodation range are generated from the bivariate normal distribution of stature and weight of the target population. In the second step, for each pair of stature and weight, the sizes of the DHM body segments are determined using hierarchical regression models and corresponding prediction distributions of individual values. The proposed generation method was applied to the 1988 US Army anthropometric survey data and then implemented to a web-based system for passenger car interior design. This web-based generation system is capable of generating a group of DHMs as nationality, gender, accommodation percentage, and the number of DHMs required is specified. Relevance to industry A digital human simulation system has been used as an effective tool for ergonomic design and evaluation of products and workplaces in virtual environment. The human model generation method proposed in the present study is of use to efficiently generate a group of human models representing the target population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.