Abstract

In India, the major crop is wheat. Its production is severely hampered by seed-borne diseases such as smut and bunt which are responsible for the reduction of crop yield with poor grain quality. In the current study, an attempt was made to prepare a photoluminescence (PL)-based immunosensor for early detection of Karnal bunt (KB) disease. The KB disease-causing pathogen Tilletia indica was detected using functionalized diatom frustules as a sensing platform. The teliospore-covered platform, on exposure to light, showed enhanced intensity of PL in comparison to control. This response was directly proportional to the concentration of spores. For the development of a stable frustule-based immunosensor platform, gluteraldehyde was added for the covalent immobilization of the T. indica antibody onto amine-functionalized diatom substrates. Frustules of diatom consisting of a nanoporous three-dimensional biogenic silica material exhibit a unique property of emitting strong, visible blue PL under ultraviolet (UV) excitation. PL studies were done to reveal the specificity and binding of the conjugated diatom platform that will distinguish between the T. indica (complementary) and A. niger (noncomplementary) antigens. Four times better intensity of PL was observed against the complementary one in comparison to a noncomplementary setup (control). The immunocomplex frustule-based platform serves as a suitable sensor platform for early detection of KB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call