Abstract
Brucellosis is considered as one of the important global zoonotic diseases that causes medical as well as economic problems especially in tropical countries. The illness has no specific pathognomonic signs; therefore, the rapid and accurate diagnosis of the disease has a very important role in preventing the Brucella spillover and treatment. The purpose of this study was to design a new indirect ELISA test for detection of human brucellosis based on using recombinant Brucella abortus outer membrane protein 16 kDa (rOMP16) as an antigen. OMP16 gene of B. abortus was initially synthesized and cloned in pET-21d vector and then expressed in Escherichia coli cells. The expression was confirmed by the SDS-PAGE, western blotting and dot blotting. The purified protein was coated in ELISA plates and an indirect ELISA was performed on 70 human serum samples. The results were evaluated with a commercial IgG ELISA kit and Rose Bengal plate agglutination tests as reference tests. Diagnostic performance of designed OMP16 ELISA test in comparison with Rose Bengal plate test revealed 100% of sensitivity, 95.00% of specificity and good Fleiss kappa agreement, whereas, where it was compared to commercial ELISA kit, it revealed very good kappa agreement with 100% of sensitivity and 100% of specificity in cut-off value of 0.13. It was concluded that OMP 16 kDa could be acceptable alternative antigen for detecting Brucella IgG antibody with high accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Veterinary research forum : an international quarterly journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.