Abstract

In the present study, an accomplished reaction network is developed for commercial conversion of heavy reformates to more valuable xylenes. The proposed kinetic model is based on 18 pseudo-components and 39 related reactions in which 7 different types of reactions are included. Thermodynamic principles are also applied to predict the reversibility of the reactions. To estimate the reaction rate constants, the absolute deviation between the model results and observed data are minimized applying differential evolution (DE) optimization method. To prove the accuracy of the proposed model, simulation results are compared with the plant data and an acceptable agreement is achieved. Then, the effect of operating conditions on the reactor performance is verified. The results of this work show that increasing the inlet temperature and molar flow rate up to certain values would improve the xylenes production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.