Abstract

Dog harnesses are becoming more popular, with their large variety stemming from the idea that different dogs and scenarios require different types of harnesses. While their benefits over collars are self-explanatory, there is a lack of research on their effect on gait, and even the existing studies examine only a limited set of parameters. The goal of present study was to establish a method capable of quantifying canine gait in detail. Based on 3D motion capture, the developed method allows for the examination of 18 joint angles and 35 spatio-temporal parameters throughout multiple gait cycles, and can be used to analyze canine movement in detail in any kind of scenario (e.g. comparing healthy and lame dogs, or measuring the effect of training). The method is presented through the measurement of how different harnesses affect walking kinematics compared to free (unleashed) movements. Four dogs with varying body sizes and breeds and multiple types of harnesses were included. Marker data was filtered using a zero-lag 6th order Butterworth-filter with a cutoff frequency of 20 Hz. The normality of the spatio-temporal and joint range of motion parameters was tested using the Anderson-Darling test (p = 0.05), with most parameters passing in 60+% of test cases. Swing time and range of motion of the sagittal aspect of spinal angle at T1 vertebrae failed more regularly, both resulting from the measurement setup rather than the actual parameters being not normally distributed. Two-sample Kolmogorov-Smirnov tests (p = 0.05) were used to compare each parameter's distribution between cases, showing that most parameters are significantly altered by the harnesses in about 2/3rd of the cases. Based on the results, there's no absolute superior harness, however, it is possible to select the best fit for a specific dog and application, justifying their large variety.

Highlights

  • Gait analysis is a well-established and objective technique to assess normal and abnormal gait accurately, identifying characteristic features of specific gait abnormalities

  • A spine marker was not visible on the recordings, so the corresponding cells are left empty. This pilot study’s goal was to establish a measurement method capable of quantifying canine gait in detail, which can determine the spatio-temporal parameters of all four limbs, the joint angles of the major joints and spinal angles from the spatial coordinate of selected anatomical landmarks, captured throughout multiple gait cycles

  • The novelty of this study is the large number of computable gait parameters established for canine gait analysis: spatio-temporal parameters for all four limbs, the sagittal aspect of the major limb joint angles, and the sagittal and horizontal aspects of spinal angles, as well as the path of any measured anatomical landmark

Read more

Summary

Introduction

Gait analysis is a well-established and objective technique to assess normal and abnormal gait accurately, identifying characteristic features of specific gait abnormalities. Development of a detailed canine gait analysis method for evaluating harnesses. Hu/index.php?menuid=930&num=135042&lang= EN), and the National Research, Development and Innovation Fund (TKP2020 NC, No BME-NCS) based on the charter of bolster issued by the National Research, Development and Innovation Office under the auspices of the Ministry for Innovation and Technology, Hungary. The three harnesses from Julius-K9® were provided free of charge by the manufacturer. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call