Abstract
Cytotoxicity studies determining hemolytic properties of antimicrobial peptides or other drugs are an important step in the development of novel therapeutics for clinical use. Hemolysis is an affordable, accessible, and rapid method for initial assessment of cellular toxicity for all drugs under development. However, variability in species of red blood cells and protocols used may result in significant differences in results. AMPs generally possess higher selectivity for bacterial cells but can have toxicity against host cells at high concentrations. Knowing the hemolytic activity of the peptides we are developing contributes to our understanding of their potential toxicity. Computational approaches for predicting hemolytic activity of AMPs exist and were tested head-to-head with our experimental results. ResultsStarting with an observation of high hemolytic activity of LL-37 peptide against human red blood cells that were collected in EDTA, we explored alternative approaches to develop a more robust, accurate and simple hemolysis assay using defibrinated human blood. We found significant differences between the sensitivity of defibrinated red blood cells and EDTA treated red blood cells. SignificanceAccurately determining the hemolytic activity using human red blood cells will allow for a more robust calculation of the therapeutic index of our potential antimicrobial compounds, a critical measure in their pre-clinical development. ConclusionWe introduce a standardized, more accurate protocol for assessing hemolytic activity using defibrinated human red blood cells. This approach, facilitated by the increased commercial availability of de-identified human blood and defibrination methods, offers a robust tool for evaluating toxicity of emerging drug compounds, especially AMPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.