Abstract

We report on the development of a 250-MHz 234 nm deep-ultraviolet pulse source based on a flexible wavelength-conversion scheme. The scheme is based on a frequency-doubled optical parametric oscillator (FD-OPO) together with a cascaded frequency conversion process. We use a χ(2) nonlinear envelope equation to guide the design of an intra-cavity OPO crystal, demonstrating a flexible broadband tunable feature and providing as high as watt-level of a frequency-doubled signal output centered at 850 nm, which is served as an input wave for the cascaded frequency conversion process. As much as 3.0 mW of an average power at 234 nm is obtained, with an rms power stability of better than 1% over 20 minutes. This deep-ultraviolet pulse laser source can be used for many applications in quantum optics and for direct laser cooling of Al+ ion clocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.