Abstract
BackgroundRecent advances in artificial intelligence (AI) have shown great promise in detecting some diseases based on medical images. Most studies developed AI diagnostic systems only using eligible images. However, in real-world settings, ineligible images (including poor-quality and poor-location images) that can compromise downstream analysis are inevitable, leading to uncertainty about the performance of these AI systems. This study aims to develop a deep learning-based image eligibility verification system (DLIEVS) for detecting and filtering out ineligible fundus images. MethodsA total of 18,031 fundus images (9,188 subjects) collected from 4 clinical centres were used to develop and evaluate the DLIEVS for detecting eligible, poor-location, and poor-quality fundus images. Four deep learning algorithms (AlexNet, DenseNet121, Inception V3, and ResNet50) were leveraged to train models to obtain the best model for the DLIEVS. The performance of the DLIEVS was evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity, as compared with a reference standard determined by retina experts. ResultsIn the internal test dataset, the best algorithm (DenseNet121) achieved AUCs of 1.000, 0.999, and 1.000 for the classification of eligible, poor-location, and poor-quality images, respectively. In the external test datasets, the AUCs of the best algorithm (DenseNet121) for detecting eligible, poor-location, and poor-quality images were ranged from 0.999–1.000, 0.997–1.000, and 0.997–0.999, respectively. ConclusionsOur DLIEVS can accurately discriminate poor-quality and poor-location images from eligible images. This system has the potential to serve as a pre-screening technique to filter out ineligible images obtained from real-world settings, ensuring only eligible images will be applied in the subsequent image-based AI diagnostic analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.