Abstract
Abstract Assisted history matching is now widely used to constrain reservoir models. However, history matching is a complex inverse problem, and it is always a big challenge to history match large fields with a large number of parameters. In this paper, we present a new technique for the gradient-based optimization methods to improve history matching for large fields. This new technique is based on data partition for the gradient calculations. The objective function is first split into local components, and the dependence of each local component on principal parameters is then analyzed to minimize the number of influential parameters. The interaction between parameters and local components is allowed in the splitting. Based on this study, we can propose a perturbation design, which allows us to calculate all derivatives of the objective function with only a few perturbations. This method is particularly interesting for regional and well level history matching, and it is also suitable to match geostatistical models by introducing numerous local parameters. This new technique makes history matching with a large number of parameters (large field) tractable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.