Abstract
Soil erosion models are usually limited in their application to the field scale; however, the management of land resources requires information at the regional scale. Large‐scale physically based land surface schemes (LSS) provide estimates of regional scale hydrologic processes that contribute to erosion. If scaling issues are adequately addressed, coupling an LSS to a physically based erosion model can provide a tool to study the regional impact of soil erosion. A coupling scheme was developed using the Variable Infiltration Capacity (VIC) model to produce hydrologic inputs for the stand‐alone Water Erosion Prediction Project‐Hillslope Erosion (WEPP‐HE) program, accounting for both temporal and spatial scaling issues. Precipitation events were disaggregated from daily to hourly and used with the VIC model to generate hydrologic fluxes. Slope profiles were downscaled from 30 arc second to 30 m hillslopes. Additionally, soil texture and erodibility were adjusted with simplified assumptions based on the full WEPP model. Soil erosion at the large scale was represented on a VIC model grid cell basis by applying WEPP‐HE to subsamples of 30 m hillslopes. On an average annual basis, results showed that the coupled model was comparable with full WEPP model predictions. On an event basis, the coupled model system captured more small erosion events, with erodibility adjustments of the same magnitude as from the full WEPP model simulations. Differences in results can be attributed to discrepancies in hydrologic data calculations and simplified assumptions in vegetation and soil erodibility. Overall, the coupled model demonstrated the feasibility of erosion prediction for large river basins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.