Abstract

Abstract A regional ocean–atmosphere coupled model is developed for climate variability and change studies. The model allows dynamic and thermodynamic interactions between the atmospheric boundary layer and an ocean mixed layer with spatially and seasonally varying depth prescribed from observations. The model reproduces the West African monsoon circulation as well as aspects of observed seasonal SST variations in the tropical Atlantic. The model is used to identify various mechanisms that couple the West African monsoon circulation with eastern Atlantic SSTs. By reducing wind speeds and suppressing evaporation, the northward migration of the ITCZ off the west coast of Africa contributes to the modeled spring SST increases. During this period, the westerly monsoon flow is expanded farther westward and moisture transport on to the continent is enhanced. Near the end of the summer, upwelling associated with this enhanced westerly flow as well as the solar cycle lead to the seasonal cooling of the SSTs. Over the Gulf of Guinea, the acceleration of the southerly West African monsoon surface winds contributes to cooling of the Gulf of Guinea between April and July by increasing the entrainment of cool underlying water and enhancing evaporation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.