Abstract
Lately, semiconductor-membrane fuel cells (SMFCs) have attained significant interest and great attention due to the deliverance of high performance at low operational temperatures, <550 °C. This work has synthesized the nanocomposite core-shell heterostructure (TiO2 -SrTiO3 ) electrolyte powder by employing the simple hydrothermal method for the SMFC. The SrTiO3 was grown in situ on the surface of TiO2 to form a core-shell structure. A heterojunction mechanism based on the energy band structure is proposed to explain the ion transport pathway and promoted protonic conductivity. The core-shell heterostructure (TiO2 -SrTiO3 ) was utilized as an electrolyte to reach the peak power density of 951 mW cm-2 with an open-circuit voltage of 1.075 V at 550 °C. The formation of core-shell heterostructure among TiO2 and SrTiO3 causes redistribution of charges and establishes a depletion region at the interface, which confined the protons' transport on the surface layer with accelerated ion transport and lower activation energy. The current work reveals novel insights to understand enhanced proton transport and unique methodology to develop low-temperature ceramic fuel cells with high performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.