Abstract

Recently, the research on humanoid robots has attracted many researchers. The research spans from stability and optimal control, gait generation, human-robot and robot-robot communication. In addition, humanoid robots have been also used to understand better human motion. Among humanoid robot prototypes the most well known is Honda humanoid robot (Hirai et. al., 1998). This robot has the ability to move forward and backward, sideways to the right or the left, as well as diagonally. In addition, the robot can turn in any direction, walk up and down stairs continuously. Other example is the 35 dof (degrees of freedom) Saika humanoid robot (Inaba et al. 1998). This robot can perform a reach-and-grasp motion through coordinating legs and arms. The key idea of the system architecture of this robot is a remote brained approach. In addition, the Waseda humanoid robot group has also developed an anthropomorphic dynamic biped walking robot adapting to the humans' living floor (Takanishi et. al., 1990). Fujitsu also has developed a commercial 25 dof miniature humanoid robot, named HOAP-1, for research purposes. Weighing 6 kg and standing 0.48 m tall, the light and compact HOAP-1 and accompanying simulation software can be used for developing motion control algorithms in such areas as two-legged walking, as well as in research on human-to-robot communication interfaces. In our robotics laboratory at Yamagata University, we initialized the humanoid robot project. The goal of this project is to contribute to the research on humanoid robots. For this reason, we developed an anthropomorphic biped humanoid robot called Bonten-Maru. During the humanoid robot design, we tried to mimic as much as possible the human characteristics, from the viewpoints of links dimensions, body structure, as well as the number and configuration of the degrees of freedom. The high number of dofs helps the humanoid robot to realize complex motions in even and uneven terrains, like walking, going up and down stairs, crawling, etc. In this chapter, we present the development of Common Object Request Broker Architecture (CORBA) based humanoid robot control systems. Consequently, this chapter explains the application of real time generation of humanoid robot optimal gait by using soft computing techniques, and also teleoperation systems and its applications. Simulation and experimental results of the proposed system in

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call