Abstract

Important requirements for the modern electric drives are the high overload capacity and a wide range of speed control. A two-phase adjustable low-power drive has these properties, but its implementation in small-scale mechanics is hindered by the need a frequency converter that provides a three-phase power grid into a two-phase network, which is important when the power of the mechanisms increases. Previous studies have already shown the possibility of using a typical frequency converter based on a three-phase full-bridge voltage inverter applying space-vector PWM method. The switching frequency of the inverter remains, unfortunately, relatively high. It is not possible to reduce this frequency without degrading the harmonic composition. The goal of this work is to develop an algorithm for controlling the two-phase electric drive system, while reducing the numberof commutations of the switching devices of the three-phase inverter, and at the same time keeping the deviations of the instantaneous values of the phase currents close enough to the reference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.