Abstract

A thermal runaway potential was identified for the conversion of a tertiary alcohol to a hydroxypyrrolotriazine intermediate in the synthesis of brivanib alaninate. A continuous process was developed to mitigate the potential thermal runaway and allow for safer scale-up. This paper describes the hazard analysis, process development, reactor development, reaction engineering model development, and scale-up of the continuous process. The process includes three separate and stable feed streams that are mixed in distinct order using in-line static mixers. Heat exchangers are arranged and connected to facilitate a “plug flow” reactor scheme allowing sufficient residence time for reaction completion. The process has been scaled-up to the pilot plant and to manufacturing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call