Abstract

With the resurgence of nuclear power and increased interest in advanced nuclear reactors as an option to supply abundant energy without the associated greenhouse gas emissions of the more conventional fossil fuel energy sources, there is a need to establish internationally recognized standards for the verification and validation (V&V) of software used to calculate the thermal–hydraulic behavior of advanced reactor designs for both normal operation and hypothetical accident conditions. To address this need, ASME (American Society of Mechanical Engineers) Standards and Certification has established the V&V 30 Committee, under the jurisdiction of the V&V Standards Committee, to develop a consensus standard for verification and validation of software used for design and analysis of advanced reactor systems. The initial focus of this committee will be on the V&V of system analysis and computational fluid dynamics (CFD) software for nuclear applications. To limit the scope of the effort, the committee will further limit its focus to software to be used in the licensing of High-Temperature Gas-Cooled Reactors. Although software verification will be an important and necessary part of the standard, much of the initial effort of the committee will be focused on the validation of existing software and new models that could be used in the licensing process. In this framework, the Standard should conform to Nuclear Regulatory Commission (NRC) and other regulatory practices, procedures and methods for licensing of nuclear power plants as embodied in the United States (U.S.) Code of Federal Regulations and other pertinent documents such as Regulatory Guide 1.203, “Transient and Accident Analysis Methods” and NUREG-0800, “NRC Standard Review Plan”. In addition, the Standard should be consistent with applicable sections of ASME NQA-1-2008 “Quality Assurance Requirements for Nuclear Facility Applications (QA)”. This paper describes the general requirements for the proposed V&V 30 Standard, which includes: (a) applicable NRC and other regulatory requirements for defining the operational and accident domain of a nuclear system that must be considered if the system is to be licensed, (b) the corresponding calculation domain of the software that should encompass the nuclear operational and accident domain to be used to study the system behavior for licensing purposes, (c) the definition of the scaled experimental data set required to provide the basis for validating the software, (d) the ensemble of experimental data sets required to populate the validation matrix for the software in question, and (e) the practices and procedures to be used when applying a validation standard. Although this initial effort will focus on software for licensing of High-Temperature Gas-Cooled Reactors, it is anticipated that the practices and procedures developed for this Standard can eventually be extended to other nuclear and non-nuclear applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call