Abstract

Profiled Edge Lamination (PEL) tooling is a promising Rapid Tooling (RT) method involving the assembly of an array of laminations whose top edges are simultaneously profiled and beveled based on a CAD model of the intended tool surface. To facilitate adoption of this RT method by industry, a comprehensive PEL Tooling Development System has been proposed. The two main parts of this system are (1) iterative tool design based on thermal and structural models and (2) fabrication of the tool using a Computer-aided Manufacturing (CAM) software and Abrasive Water Jet (AWJ) cutting. CAM software has been developed to take lamination slice data (profiles) from any proprietary RP software in the form of polylines and create smooth, kinematically desirable cutting trajectories for each tool lamination. Two cutting trajectory algorithms, called Identical Equidistant Profile Segmentation (IEPS) and Adaptively Vectored Profiles Projection (AVPP), were created for this purpose. By comparing the performance of both algorithms with a benchmark part shape, the AVPP algorithm provided better cutting trajectories for complicated tool geometries. A 15-layer aluminum PEL tool was successfully fabricated using a 5-axis CNC AWJ cutter and NC code generated by the CAM software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.