Abstract

An approach to definition of a homogeneous simulation model for honeycomb structures has been developed and verified for specimens containing a finite number of cells. The elastic characteristics of the model were evaluated basing on the results of tensile and shear numerical tests of honeycomb specimen. This is an extension of earlier work related with spatially reinforced composites. The simulation model was validated for specimens comprised of different numbers of cells in the specimen to expose the scale effect influence. As the number of cells was increased, the calculated values of the moduli Ex and Ey converged, confirming the theoretical result that the appropriate model is transversely isotropic rather than orthotropic for the honeycomb specimen investigated. Elastic properties obtained from the numerical test of the honeycomb structure were then applied in the characterization of continuous medium. The examination was carried out using criteria expressing basic features of homogeneous body. The case of a honeycomb integrated with composite plates as a sandwich structure was analysed for a complex loading case as well as buckling and eigen- frequency analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.