Abstract

A new automated workflow based computationally efficient hydrologic modeling application is developed for soil moisture and runoff simulation. The spatially distributed conceptual framework underpinning the Soil Moisture And Runoff simulation Toolkit (SMART) resolves water balance in large upland catchments where topography and land cover are significant drivers of rainfall-runoff transformations. SMART's computational efficiency is achieved by delineation of contiguous and topologically connected hydrologic response units and solving the water balance equation on spatially representative Equivalent Cross-Sections (ECSs). ECSs are formulated by aggregating topographic and physiographic properties of the complete or part of the first order Strahler sub-basins, thereby reducing the number of computational elements. Water balance simulations across the ECSs in two sub-basins illustrated little loss of accuracy compared to the distributed cross section delineations and soil moisture observations. A 2-dimensional Richards' equation based hydrologic model in SMART can be augmented with additional functionalities or replaced with other model structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.