Abstract

Computational fluid dynamics (CFD) modeling of myocardial bridging (MB) remains challenging due to its dynamic and phasic nature. This study aims to develop a patient-specific CFD model of MB. There were two parts to this study. The first part consisted of developing an in silico model of the left anterior descending (LAD) coronary artery of a patient with MB. In this regard, a moving-boundary CFD algorithm was developed to simulate the patient-specific muscle compression caused by MB. A second simulation was also performed with the bridge artificially removed to determine the hemodynamics in the same vessel in the absence of MB. The second part of the study consisted of hemodynamic analysis of three patients with mild and moderate and severe MB in their LAD by means of the developed in silico model in the first part. The average shear stress in the proximal and bridge segments for model with MB were significantly different from those for model without MB (proximal segment: 0.32 ± 0.14 Pa (with MB) versus 0.97 ± 0.39 Pa (without MB), P < 0.0001 - bridge segment: 2.60 ± 0.94 Pa (with MB) versus 1.50 ± 0.64 Pa (without MB), P < 0.0001). When all three patients were evaluated, increasing the degree of vessel compression shear stress in the proximal segment decreased, whereas the shear stress in the bridge segment increased. The presence of MB resulted in hemodynamic abnormalities in the proximal segment, whereas segments within the bridge exhibited hemodynamic patterns which tend to discourage atheroma development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.