Abstract

This study aimed to characterize the in vitro effect of EV-077, a compound that antagonises the binding of prostanoids and isoprostanes to the thromboxane receptor (TP) and inhibits the thromboxane synthase (TS), on platelet aggregation of patients with type-2 diabetes and coronary artery disease (CAD) on chronic aspirin treatment. The effect of EV-077 on 8-iso-PGE2-mediated TP receptor contraction of human arteries was also investigated.Fifty-two type-2 diabetics with CAD on chronic aspirin (100 mg) treatment were studied. Arachidonic acid-induced platelet aggregation was measured by impedance aggregometry in platelet-rich plasma (PRP) and whole blood anticoagulated with hirudin, and by light transmission aggregometry in citrate-anticoagulated PRP following 10-min in vitro exposure to EV-077 (100 nmol/l) or control. The effect of EV-077 was measured on isometric contraction of 24 human umbilical arteries induced by isoprostane 8-iso-PGE2.Arachidonic acid (1 mmol/l) induced substantial aggregation in hirudin-anticoagulated whole blood (63 ± 4 AU), which was significantly reduced by in vitro exposure to EV-077 (38 ± 3 AU, P < 0.001). Virtually no arachidonic acid-induced aggregation in citrate-anticoagulated or hirudin-anticoagulated PRP was observed. EV-077 potently, competitively and reversibly inhibited TP mediated contraction of umbilical arteries by 8-iso-PGE2 (P < 0.01).Aspirin did not completely inhibit arachidonic acid-induced platelet aggregation in whole blood from type-2 diabetics with CAD. This aggregation is likely induced by prostanoids and/or isoprostanes produced by leukocytes, because it was significantly reduced by EV-077. The TP receptor-mediated contraction of human arteries induced by isoprostane 8-iso-PGE2 was effectively inhibited by EV-077.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.