Abstract
An exciting current resulted from the hysteresis characteristics of the core causes an error of a measurement current transformer (CT). To produce the high accuracy measurement CT, it is designed to minimise the exciting current. This requires a large cross-section of the core and the high permeability core. If the exciting current can be estimated exactly and compensated, the accuracy of the measurement CT can be improved significantly. This study describes the development of a compensation algorithm for a measurement CT. The proposed compensation algorithm decomposes the exciting current into the core-loss current and the magnetising current. The algorithm uses not the hysteresis curve but the flux-magnetising current curve to minimise the number of required curves for interpolation. The exciting current at every sampling interval is obtained by summing the core-loss current and the magnetising current and then added to the measured secondary current to obtain the correct primary current. The test results using Electromagnetic Transients Program (EMTP)-generated data indicate that the proposed algorithm can improve the accuracy of the measurement CT significantly even with a couple of the curves. The experimental test results indicate that the compensator can improve the accuracy of the CT significantly from 2.5 to 0.1%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.