Abstract

This paper presents a compact battery-powered switched-reluctance motor (SRM) drive for an electric vehicle with voltage-boosting and on-board power-factor-corrected-charging capabilities. Although the boost-type front-end DC/DC converter is externally equipped, the on-board charger is formed by the embedded components of SRM windings and converter. In the driving mode, the DC/DC boost converter is controlled to establish boostable well-regulated DC-link voltage for the SRM drive from the battery. During demagnetization of each stroke, the winding stored energy is automatically recovered back to the battery. Moreover, the regenerative braking is achieved by properly setting the SRM in the regenerating mode. The controls of two power stages are properly designed and digitally realized using a common digital signal processor. Good winding current and speed dynamic responses of the SRM drive are obtained. In addition, the static operation characteristics are also improved. In the charging mode, the power devices that were embedded in the SRM converter and the three motor-phase windings are used to form a buck-boost switch-mode rectifier to charge the battery from utility with good power quality. All constituted circuit components of the charger are placed on board, and only the insertion of power cords is needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call