Abstract

Flesh color of watermelon is an agronomically important trait that is predominantly determined by a network of the carotenoid biosynthetic pathway, which also contributes to the nutritional value of the fruit through the health-promoting function of carotenoids. We have identified a key gene, lycopene β-cyclase (LCYB) that may determine canary yellow and red flesh color of watermelon and developed a zero-distance molecular marker that identifies a critical single nucleotide polymorphism (SNP) that distinguishes different alleles of the LCYB gene. Analysis of the flesh color inheritance in segregating populations indicated that a single gene determines the color difference between canary yellow and red flesh in watermelon. The sequence comparison of full-length cDNA of LCYB, which was isolated using degenerate PCR and RACE, identified three SNPs in the coding region of LCYB between canary yellow and red. These SNPs showed perfect co-segregation with flesh color phenotypes. One of the SNPs introduces an amino acid replacement of evolutionarily conserved Phe226 to Val, which may impair the catalytic function of LCYB. This SNP was used to develop a cleaved amplified polymorphic sequence (CAPS) marker, which perfectly cosegregated with flesh color phenotype. Our results strongly suggest that LCYB may be the genetic determinant for canary yellow or red flesh color and our CAPS marker will allow breeders to economically distinguish between canary yellow and red watermelon fruit color at the seedling stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call