Abstract

We describe an inexpensive paper-based sensor for rapid detection of low concentrations (ppm) of hydrogen cyanide gas. A piece of filter paper pre-spotted with a dilute monocyanocobinamide [CN(H2O)Cbi] solution was placed on the end of a bifurcated optical fiber and the reflectance spectrum of the CN(H2O)Cbi was monitored during exposure to 1.0–10.0ppm hydrogen cyanide gas. Formation of dicyanocobinamide yielded a peak at 583nm with a simultaneous decrease in reflectance from 450–500nm. Spectral changes were monitored as a function of time at several relative humidity values: 25, 50, and 85% relative humidity. With either cellulose or glass fiber papers, spectral changes occurred within 10s of exposure to 5.0ppm hydrogen cyanide gas (NIOSH recommended short-term exposure limit). We conclude that this sensor could provide a real-time end-of-service-life alert to a respirator user.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.