Abstract

Abstract A method has been developed for partitioning of minor actinides from fast reactor (FR) fuel solution by a TRUEX solvent composed of 0.2 M n-octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide (CMPO)-1.2 M tri-n-butylphosphate (TBP) in n-dodecane (n-DD), and subsequently demonstrated with genuine fast reactor dissolver solution (155 GWd/Te) using a novel 16-stage ejector mixer settler in hot cells. Cesium, plutonium and uranium present in the dissolver solution were removed, prior to minor actinide partitioning, by using ammonium molybdophosphate impregnated XAD-7 (AMP-XAD), methylated poly(4-vinylpyridine) (PVP-Me), and macroporous bifunctional phosphinic acid (MPBPA) resins respectively. Extraction of europium(III) and cerium(III) from simulated and real dissolver solution, and their stripping behavior from loaded organic phase was studied in batch method using various citric acid–nitric acid formulations. Based on these results, partitioning of minor actinides from fast reactor dissolver solution was demonstrated in hot cells. The extraction and stripping profiles of 154Eu, 144Ce, 106Ru and 137Cs, and mass balance of 241Am(III) achieved in the demonstration run have been reported in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.