Abstract

Increasing pressures on natural resources has led to the adoption of water quality standards to protect ecological and human health. Lakes and reservoirs are particularly vulnerable to pressure on water quality owing to long residence times compared with rivers. This has raised the question of how to determine and to quantify the sources of priority chemicals (e.g. nutrients, persistent organic pollutants and metals) so that suitable measures can be taken to address failures to comply with regulatory standards. Contaminants enter lakes waters from a range of diffuse and point sources. Decision support tools and models are essential to assess the relative magnitudes of these sources and to estimate the impacts of any programmes of measures. This paper describes the development and testing of the Source Apportionment Geographical Information System (SAGIS) for future management of 763 lakes in England and Wales. The model uses readily available national data sets to estimate contributions of a number of key chemicals including nutrients (nitrogen and phosphorus), metals (copper, zinc, cadmium, lead, mercury and nickel) and organic chemicals (Polynuclear Aromatic Hydrocarbons) from multiple sector sources. Lake-specific sources are included (groundbait from angling and bird faeces) and hydrology associated with pumped inputs and abstraction. Validation data confirms the efficacy of the model to successfully predicted seasonal patterns of all types of contaminant concentrations under a number of hydrological scenarios. Such a tool has not been available on a national scale previously for such a wide range of chemicals and is currently being used to assist with future river basin planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.