Abstract

Sodium-dependent glucose cotransporters (SGLT1 and SGLT2), which have a key role in the absorption of glucose in the kidney and/or gastrointestinal tract, have been proposed as a novel therapeutic strategy for diabetes and cardiomyopathy. Here we developed a simple cell-based, nonradioactive method for functional screening of SGLT1 and SGLT2 inhibitors. Stable cell lines expressing human SGLT1 and SGLT2 were established by transfecting HEK293 cells with vectors (pCMV6-Neo) having full-length human SGLT1 and SGLT2 and selecting the positive clones following neomycin treatment. We confirmed the gene expression of SGLT1 and SGLT2 by reverse transcription polymerase chain reaction (RT–PCR) and immunoblotting. Furthermore, to analyze the function of SGLTs, we incubated stable cell lines with 2-deoxyglucose or fluorescent d-glucose analog (2-NBDG) and performed glucose uptake assay. A significant (P<0.001) increase in glucose uptake was observed in both cell lines. The increased glucose uptake in both cell lines was completely inhibited when treated with nonspecific SGLT1/SGLT2 inhibitors and phlorizin (100μM), but not when treated with nonspecific sodium-independent facilitative glucose transporter (GLUT) inhibitors (100μM). Taken together, our data suggest that cell-based methods developed for screening SGLT1/SGLT2 inhibitors are phlorizin sensitive and specific for respective glucose transporters. This assay provides a simple and rapid method for identifying novel and selective SGLT inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.