Abstract
Puccinellia tenuiflora is the main grass species growing in the saline–alkali soil of the Songnen plain in northeastern China, suggesting it has a high tolerance to saline stress. In this study, cDNA microarrays containing 1067 clones of P. tenuiflora were constructed to investigate gene expression patterns resulting from saline–alkali (NaHCO 3) stress. RNA was extracted from P. tenuiflora treated with 400 mmol L −1 NaHCO 3 for 6, 12, 24 and 48 h. Untreated (no saline–alkali stress) samples were used as control. A total of 95 transcripts were differentially regulated under the conditions studied, and 38, 35, 25 and 49 genes were differentially expressed with NaHCO 3 stress for 6, 12, 24 and 48 h, respectively. Among these, approximately 40% were putative novel or functionally unknown genes, and the remainder function in photosynthesis, cell rescue, defense, transport, metabolism, transcription regulation and protein destination, etc. Analysis of the P. tenuiflora genes demonstrated the complexity of, and differences in, gene expression patterns resulting from different NaHCO 3 stress times. The genetic relationship between P. tenuiflora and other plants was investigated by BlastN analysis. The results showed nearly 20% of the expressed sequence tags from P. tenuiflora shared significant similarities with rice Oryza sativa, an important food crop. The close genetic relationship between these two species suggests that P. tenuiflora may be a good plant model for studying saline–alkali tolerance mechanisms in O. sativa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.