Abstract
To develop a catalytic hairpin assembly (CHA)-based fluorescent assay for the detection of the target RNA of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), so as to realize the rapid nucleic acid testing of SARS-CoV-2. A 24-nt segment of the SARS-CoV-2 nucleocapsid protein gene (N gene, NC_045512.2) was chosen as the target RNA and the hairpin motif 1 (H1) and hairpin motif 2 (H2) were designed based on the principle of CHA reaction. The H1 motif was labelled with a fluorophore group as well as a quencher group. When the target RNA was added to the hairpin motifs, CHA reaction was triggered at room temperature (25 ℃), which led to the amplification of fluorescence signal, thereby enabling the rapid detection of the target RNA. After the optimization of the hairpin motifs and the experimental conditions, the sensitivity and the specificity of the testing method were measured to evaluate its performance. We successfully constructed a CHA-based fluorescent assay specifically for the target RNA of SARS-CoV-2. With this method, testing could be completed at room temperature within 30 min. This testing method exhibited excellent specificity and could be used to accurately distinguish the perfectly-matched target RNA from the target RNA with single-base mutations. In addition, the testing method demonstrated good sensitivity, with a detection limit of 50 pmol/L. The proposed assay enables the simple and rapid detection of the SARS-CoV-2 target RNA with excellent sensitivity and specificity, showing great promise for further optimization and subsequent clinical application for the rapid detection of SARS-CoV-2 nucleic acid.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.