Abstract
Currently, limited mouse models that mimic the clinical course of castrate resistant prostate development currently exist. Such mouse models are urgently required to conduct pre-clinical studies to assist in the understanding of disease progression and the development of rational therapeutic strategies to treat castrate resistant prostate cancer. Wild type intact FVB male mice were injected by subcutaneous injection with Myc-CaP cells to establish androgen sensitive Myc-CaP tumors. Tumor bearing mice were castrated and resulting tumors serially passaged in pre-castrated FVB male mice to produce a bone fide Myc-CaP castrate resistant tumor. Immunohistochemical analysis revealed that initial androgen sensitive Myc-CaP tumors had strong nuclear transcriptional active androgen receptor expression, as indicated by marked c-MYC staining and were highly proliferative. Castration of tumor bearing animals resulted in cytoplasmic relocation of androgen receptor concurrent with loss of transcriptional activity and tumor proliferation. Serial passaging of castrate refractory Myc-CaP in pre-castrated male FVB mice resulted in the development of a bona fide castrate resistant Myc-CaP tumor which pheno-copied the original androgen sensitive parental Myc-CaP tumor. Developing a murine castrate transplant resistant tumor model that mimics the clinical course of human castrate resistant prostate cancer will create better opportunities to understand the development of castrate resistant prostate cancer and also allow for more rapid pre-clinical studies to stratify rational novel therapies for this lethal form of prostate cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.