Abstract
A cascaded feedback control strategy for an industrial vapour-phase axial deposition (VAD) process is investigated in this paper. VAD is a widely used process in the creation of high-purity glass for optical fibre. In previous work a soot tip surface temperature controller was developed for the VAD process to reduce the effects of core soot temperature variation on deposition geometry, leading to a more stable process. However, it is desired to regulate both the core soot and clad soot such that they deposit at the same axial rate to provide a more uniform product. This paper presents the development of a cascaded controller strategy and process model to couple and regulate the surface temperature and deposition rates of core and clad soot. Simulation studies demonstrate a potential improvement in the uniformity of the core and clad soot geometry over the soot product length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.