Abstract

The United States Air Force Academy (USAFA) is in the process of developing a series of ground-based and space-based experiments to investigate the equatorial ionosphere over Guam and the southern crest of the Equatorial Appleton Anomaly over New Guinea. On the ground the Digital Ionospheric Sounder (University of Massachusetts, Lowell DPS-4 unit) and a dual-frequency GPS TEC/scintillation monitor will be used to investigate ionospheric phenomena in both campaign and long-term survey modes. In campaign mode, we will combine these observations with those collected from space during USAFA’s FalconSAT-3 and FalconSAT-5 low Earth orbit satellite missions, which will be active over a period of several years beginning in the first quarter of the 2007 calendar year. Additionally, we will investigate the long-term morphology of key ionospheric characteristics useful for driving the International Reference Ionosphere, such as critical frequencies (f oE, f oF1, f oF2, etc.), the M(3000) F2 parameter (the maximum useable frequency for a signal refracted within the F2 layer and received on the ground at a distance of 3000 km away), and a variety of other characteristics. Specific targets of investigation include: (a) a comparison of TEC observed by the GPS receiver with those calculated by IRI driven by DPS-4 observations, (b) a comparison of plasma turbulence observed on-orbit with ionospheric conditions as measured from the ground, and (c) a comparison between topside ionospheric satellite in situ measurements of plasma density during an overpass of a Digisonde versus the calculated value based on extrapolation of the electron density profiles using Digisonde data and a topside α-Chapman function. This last area of investigation is discussed in detail in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call